29 februari 2024 • UV-straling van zware sterren verhindert ontstaan Jupiter-achtige planeet
Een internationaal team van wetenschappers met daarbij onder anderen Alessandra Candian (Universiteit van Amsterdam) en Xander Tielens (Universiteit Leiden) heeft met behulp van ruimtetelescoop Hubble en het ALMA-observatorium aangetoond dat uv-straling van zware sterren kan verhinderen dat planeten ontstaan (Science, 1 maart). Het team bestudeerde de Orionnevel, een bekende kraamkamer van sterren. De sterrenkundigen ontdekten dat een Jupiter-achtige planeet-in-wording in de protoplanetaire schijf d203-506 niet gevormd kon worden doordat zware sterren in de naburige Trapeziumcluster intense uv-straling produceren. De uv-straling zorgt ervoor dat gas uit de protoplanetaire schijf wordt weggeblazen. Daardoor is er te weinig gas over om een Jupiter-achtige planeet te vormen. 
Meer informatie:
Oorspronkelijk persbericht

   
29 februari 2024 • Astronomen ontdekken nieuw verband tussen water en planeetvorming
Onderzoekers hebben waterdamp ontdekt in de schijf rond een jonge ster, precies op de plek waar mogelijk planeten worden gevormd. Water is een onmisbaar ingrediënt voor het leven op aarde, en vermoed wordt dat het ook een belangrijke rol speelt bij de vorming van planeten. Maar tot nu toe was het nog nooit gelukt om in kaart te brengen hoe water is verdeeld in een stabiele, koele schijf – het soort schijf dat de gunstigste omstandigheden biedt voor de planeetvorming rond sterren. De nieuwe bevindingen zijn gebaseerd op gegevens van de Atacama Large Millimeter/submillimeter Array (Nature Astronomy, 29 februari). ‘Ik had nooit gedacht dat we een opname konden maken van oceanen van waterdamp in hetzelfde gebied waar waarschijnlijk een planeet wordt gevormd,’ zegt Stefano Facchini, astronoom aan de Universiteit van Milaan (Italië), die leiding gaf aan het onderzoek waarvan de resultaten vandaag zijn gepubliceerd. De waarnemingen laten zien dat de binnenschijf van de jonge zonachtige ster HL Tauri, die op een afstand van 450 lichtjaar in het sterrenbeeld Stier staat, minstens drie keer zoveel water bevat als alle oceanen op aarde bij elkaar. ‘Het is echt opmerkelijk dat we niet alleen waterdamp kunnen detecteren, maar ook detailrijke beelden kunnen vastleggen op 450 lichtjaar van ons vandaan,’ voegt medeauteur Leonardo Testi, astronoom aan de Universiteit van Bologna (Italië) toe. De ALMA-waarnemingen hebben astronomen in staat gesteld om de verdeling van water in verschillende delen van de schijf rond HL Tauri te meten. Er is een aanzienlijke hoeveelheid water gevonden in het gebied waar zich een ringvormige leemte in de schijf van HL Tauri bevindt. Zo’n concentrische ‘scheiding’ in een schijf van gas en stof wordt uitgesleten door om de ster cirkelende jonge, planeetachtige objecten, die zo materiaal verzamelen en aangroeien. ‘Onze opnamen laten een aanzienlijke hoeveelheid waterdamp zien op verschillende afstanden van de ster, waaronder een leemte waar zich op dit moment mogelijk een planeet vormt,’ zegt Facchini. Dit wijst erop dat deze waterdamp van invloed kan zijn op de chemische samenstelling van planeten die zich in gebieden als deze vormen. Het opsporen van water met behulp van een telescoop op aarde is geen gemakkelijke opgave, omdat de vele waterdamp in de atmosfeer van onze planeet de straling die ALMA oppikt, verstoort. ALMA is een opstelling van tientallen radioschotels op ongeveer 5000 meter hoogte in de Chileense Atacama-woestijn, die met opzet op deze hoge en droge locatie is neergezet om zo min mogelijk last te hebben van de waterdamp in de aardatmosfeer. Momenteel is dit de enige waarneemfaciliteit op aarde die in staat is om het signaal van water in een koele planeet-vormende schijf te onderscheiden. ‘Het is echt heel spannend om op een opname te zien hoe watermoleculen vrijkomen uit ijzige stofdeeltjes,’ zegt ESO-astronoom Elizabeth Humphreys, die eveneens aan het onderzoek heeft meegewerkt. De stofdeeltjes in een schijf fungeren als kiemen voor de vorming van planeten. Ze botsen op elkaar en klonteren samen tot steeds grotere brokstukken die om de ster draaien. Astronomen denken dat waar het koud genoeg is om water aan stofdeeltjes te laten ‘aanvriezen’, alles beter aan elkaar blijft plakken – een ideale omgeving voor de vorming van planeten. ‘Onze resultaten laten zien dat de aanwezigheid van water de ontwikkeling van een planetenstelsel kan beïnvloeden, net zoals dat zo’n 4,5 miljard jaar geleden in ons eigen zonnestelsel gebeurde,’ aldus Facchini. (EE)
Meer informatie:
Oorspronkelijk persbericht

   
29 februari 2024 • Dwergstelsels waren verantwoordelijk voor de reionisatie van het heelal
Een internationaal onderzoeksteam heeft, met behulp van de Webb-ruimtetelescoop, voor het eerst spectroscopische waarnemingen gedaan van de zwakste sterrenstelsels tijdens de eerst miljard jaar van het heelal (Nature, 28 februari). De waarnemingen lossen een vraagstuk op waar astronomen al lang mee worstelen: welke objecten hebben de reionisatie van het heelal veroorzaakt? Er is nog veel onduidelijk over de periode in de vroege geschiedenis van het heelal die bekendstaat als het tijdperk van reionisatie. Tot aan deze periode was het heelal gevuld met een dichte ‘mist’ van waterstofgas, waardoor de ruimte in duisternis was gehuld. Daar kwam pas verandering in toen de eerste sterren het hen omringende gas ioniseerden en hun licht zich ongehinderd kon voortplanten. Astronomen zijn al tientallen jaren bezig om bronnen van straling op te sporen die krachtig genoeg kunnen zijn geweest om de kosmische waterstofmist geleidelijk te doen optrekken. Bij het nieuwe onderzoek hebben de astronomen Webb gericht op de Abell 2744, een cluster van sterrenstelsels op ongeveer vier miljard lichtjaar van de aarde die ook wel Pandora’s Cluster wordt genoemd. Deze enorme samenscholing van sterrenstelsels vervormt het weefsel van de ruimte, waardoor zij als een enorme natuurlijke lens fungeert. Als gevolg daarvan vergroot en vervormt de lenscluster de beelden van verre sterrenstelsels. Dankzij dit zogeheten zwaartekrachtlenseffect konden de astronomen objecten onderzoeken die van ons uit gezien ver achter Abell staan. Daarbij hebben ze acht extreem zwakke sterrenstelsels ontdekt die normaal gesproken zelfs met de geavanceerde Webb-ruimtetelescoop niet waarneembaar zouden zijn geweest. Uit het onderzoek blijkt dat deze zwakke sterrenstelsels enorme veel ultraviolet licht uitzenden – vier keer zoveel als tot nu toe werd aangenomen. Dit betekent dat de meeste energierijke fotonen die het heelal hebben gereïoniseerd waarschijnlijk van dwergstelsels als deze afkomstig waren. Om tot deze conclusie te komen, heeft het team extreem gevoelige beeldgegevens van de Webb-ruimtetelescoop gecombineerd met opnamen die de ‘oude’ Hubble-ruimtetelescoop van Abell 2744 heeft gemaakt. Zo konden extreem zwakke kandidaat-sterrenstelsels uit het reionisatietijdperk worden geselecteerd. Vervolgens werden met de nabij-infraroodspectrograaf van Webb de spectra van deze stelsels vastgelegd. Het is voor het eerst dat astronomen een betrouwbare schatting hebben kunnen maken van hoe talrijk de dwergstelsels in het vroege heelal waren. De resultaten bevestigen dat ze het meest voorkomende soort sterrenstelsels waren. (EE)
Meer informatie:
Webb finds dwarf galaxies reionised the Universe

   
27 februari 2024 • Geramde planetoïde Dimorphos vertoont mogelijk geen inslagkrater
Volgens een nieuwe analyse van de inslag van NASA-ruimtesonde DART op de kleine planetoïde Dimorphos, in september 2022, is laatstgenoemde mogelijk flink vervormd geraakt bij de botsing. En dat zou wel eens kunnen betekenen dat een geplande onbemande onderzoeksmissie naar Dimorphos geen inslagkrater zal aantreffen, maar een netjes ‘herstelde’ berg ruimtepuin (Nature Astronomy, 26 februari). De DART-missie – de Double Asteroid Redirection Test – had tot doel om te onderzoeken of het mogelijk is om een planetoïde van koers te doen veranderen door hem met een ruimtesonde te rammen. Dimorphos werd als doelwit gekozen, omdat het een kleine planetoïde is die om een grotere soortgenoot – Didymos – cirkelt. Een geslaagde inslag zou de omlooptijd van dit object meetbaar kunnen veranderen. En dat is ook precies wat er gebeurde: de verandering van de omlooptijd was zelfs groter dan verwacht. Omdat het nog wel even duurt voordat wetenschappers Dimorphos van dichtbij kunnen bestuderen, heeft een team onder leiding van planeetwetenschapper Sabina Raducan van de Universiteit van Bern (Zwitserland) voor een alternatieve aanpak gekozen. Het team heeft computersimulaties gemaakt van Dimorphos en de DART-ruimtesonde, om de (van grote afstand) waargenomen gevolgen van de inslag te reproduceren. Daarbij is gelet op de overdracht van impulsmoment van de ruimtesonde naar de planetoïde, de hoeveelheid materiaal die van Dimorphos werd weggeblazen, en de vorm die dat materiaal aannam terwijl het de ruimte in spoot. Bij hun simulaties konden Raducan en haar collega’s twee parameters variëren: de samenstelling en de dichtheid van Dimorphos. Bekend was al dat Dimorphos en Didymos losse samenballingen van stof en keien zijn. De simulaties bevestigen dat: ze laten zien dat Dimorphos dermate los in elkaar zit dat DART geen litteken op zijn oppervlak heeft achtergelaten. In plaats daarvan werd de planetoïde vervormd door de inslag en herschikte zijn losse oppervlaktemateriaal zich. Volgens de onderzoekers zou dit ook kunnen betekenen dat Dimorphos een ‘kindje’ van Didymos is. Laatstgenoemde is eveneens een losse samenballing van gesteente, en door zijn draaiing kan er vrij gemakkelijk materiaal van zijn oppervlak ontsnappen. En dat zou zich vervolgens weer hebben kunnen samenballen tot een maantje. Of dit scenario klopt, zal over enkele jaren duidelijk worden. In oktober wil het Europese ruimteagentschap ESA de ruimtesonde Hera lanceren, die Didymos en Dimorphos van dichtbij moet gaan bekijken. Naar verwachting zal zij eind 2026 op haar bestemming aankomen. (EE)
Meer informatie:
Asteroid Struck by a Spacecraft Might Be ‘Healing’ as its Surface Reforms (ScienceAlert)

   
27 februari 2024 • Mogelijke afstammeling van de eerste sterren kan meerdere voorouders hebben gehad
In juni 2023 maakten astronomen de ontdekking bekend van een ster wiens chemische samenstelling overeen zou komen met die van de eerste generatie van zeer zware sterren. Nieuw onderzoek wijst er echter op dat de ster – LAMOST J1010+2358 – toch niet zo ‘raszuiver’ hoeft te zijn. De eerste sterren in het heelal ontstonden door het samentrekken van gaswolken die uitsluitend uit waterstof, helium en een snufje lithium bestonden. Deze eenvoudige cocktail van chemische elementen maakte het mogelijk dat de eerste generatie van sterren enorme massa’s konden bereiken. Deze ‘oersterren’ produceerden nieuwe, zwaardere elementen in hun kernen en verspreidden deze uiteindelijk over het heelal. Hoewel de zware sterren van deze eerste generatie allang zijn verdwenen, zwerven hun nakomelingen mogelijk nog rond in het heelal. En het opsporen van zo’n afstammeling zou astronomen in staat kunnen stellen om meer te weten te komen over de allereerste sterren in het heelal. J1010+2358 werd gezien als zo’n mogelijke nakomeling, omdat zijn samenstelling suggereert dat hij bestaat uit gas dat is achtergelaten door een ster die maar liefst 260 keer zoveel massa had als onze zon. Een team onder leiding van Ioanna Koutsouridou (Universiteit van Florence, Italië) heeft nu onderzocht of J1010+2358 daadwerkelijk afstamt van één enkele, zware ster van de eerste generatie. Met behulp van chemische modelberekeningen hebben de astronomen vastgesteld dat J1010+2358 inderdaad een afstammeling moet zijn van een ster van 26 zonsmassa’s, maar dat hij waarschijnlijk meerdere stellaire voorouders heeft gehad. Doordat het spectrum van de ster een aantal opvallende hiaten vertoont, zoals een gebrek aan elementen met oneven atoomgetallen, waaronder natrium, kan op dit moment alleen worden vastgesteld dat zijn vermeende stellaire voorouder minimaal tien procent van zijn ‘metalen’ (astronomisch jargon voor alle elementen zwaarder dan helium) heeft bijgedragen. Kortom: voor zover astronomen nu kunnen nagaan, kan J1010+2358 meer dan één stellaire voorouder hebben. De jacht op afstammelingen van de eerste sterren gaat voorlopig dus gewoon door. (EE)
Meer informatie:
Have We Found a Direct Descendant of the First Stars?

   
26 februari 2024 • Metalen litteken ontdekt op ‘kannibaal-ster’
Wanneer een ster zoals onze zon het einde van zijn bestaan bereikt, kan hij de hem omringende planeten en planetoïden opslokken. Met behulp van de Very Large Telescope (VLT) van de Europese Zuidelijke Sterrenwacht (ESO) in Chili hebben onderzoekers nu voor het eerst een duidelijk spoor van dit proces ontdekt: een litteken dat op het oppervlak van een witte dwergster is achtergelaten (The Astrophysical Journal Letters, 26 februari). ‘Het is algemeen bekend dat sommige witte dwergen – de langzaam afkoelende restanten van sterren zoals onze zon – delen van hun planetenstelsels opeten. We hebben nu ontdekt dat het magnetische veld van de ster daarbij een cruciale rol speelt, wat resulteert in een litteken op het oppervlak van de witte dwerg,’ zegt Stefano Bagnulo, astronoom aan het Armagh Observatory and Planetarium in Noord-Ierland (VK). Het litteken dat het team heeft waargenomen is een concentratie van metalen op het oppervlak van de witte dwerg WD 0816-310 – het overblijfsel ter grootte van de aarde van een ster die op onze zon leek, maar iets groter was. ‘We hebben aangetoond dat deze metalen afkomstig zijn van een planetair brokstuk dat minstens zo groot was als Vesta, die met een middellijn van ongeveer 500 kilometer de op één na grootste planetoïde van ons zonnestelsel is,’ aldus medeauteur Jay Farihi van het University College London (VK). De waarnemingen hebben ook aanwijzingen opgeleverd over hoe de ster aan zijn metalen litteken komt. Het team stelde vast dat de sterkte van de metaaldetectie tijdens de draaiing van de ster variaties vertoonde. Dit suggereerde dat de metalen zich hebben opgehoopt op een specifiek deel van het oppervlak van de witte dwerg, in plaats van gelijkmatig over het oppervlak te zijn verdeeld. De onderzoekers ontdekten ook dat deze variaties synchroon liepen met veranderingen in het magnetische veld van de witte dwerg, wat erop wijst dat het metalen litteken zich bij een van zijn magnetische polen bevindt. Bij elkaar duiden deze aanwijzingen erop dat het magnetische veld metalen naar de ster toe heeft gesluisd, en zo het litteken heeft veroorzaakt. ‘Verrassend genoeg was het materiaal niet gelijkmatig over het oppervlak van de ster verdeeld, zoals de theorie voorspelde. In plaats daarvan is een opeenhoping van planetair materiaal ontstaan, die op zijn plaats wordt gehouden door hetzelfde magnetische veld dat de neerstortende brokstukken naar het steroppervlak heeft geleid,’ aldus medeauteur John Landstreet van de Western University in Canada. (EE)
Meer informatie:
Oorspronkelijk persbericht

   
24 februari 2024 • Nieuwe maantjes ontdekt bij Uranus en Neptunus
Er zijn drie nieuwe maantjes ontdekt in ons zonnestelsel: eentje bij de planeet Uranus – de eerste en waarschijnlijk kleinste in meer dan twintig jaar – en twee bij Neptunus, waarvan de ene de zwakste maan is die ooit vanaf de aarde is opgespoord. De ontdekkingen zijn gedaan onder leiding van de Amerikaanse astronoom Scott Sheppard van Carnegie Science. Het nieuwe maantje van Uranus brengt het totaal voor deze planeet op 28. Met een grootte van slechts acht kilometer is het waarschijnlijk het kleinste maantje van Uranus. Het heeft de voorlopige aanduiding S/2023 U1 gekregen en zal uiteindelijk worden vernoemd naar een personage uit een toneelstuk van Shakespeare – in lijn met de overige buitenmanen van deze planeet. Het doet er 680 dagen over om eenmaal om Uranus te draaien. S/2023 U1 werd op 4 november 2023 voor het eerst waargenomen door Sheppard met de Magellan-telescopen van de Las Campanas-sterrenwacht in Chili. Bij vervolgwaarnemingen in december kon, in samenwerking met Marina Brozovic en Bob Jacobson van NASA’s Jet Propulsion Laboratory, de vermoedelijke omloopbaan van het maantje worden bepaald. Vervolgens wist Sheppard het nieuwe Uranusmaantje nog te lokaliseren op oudere beelden die hij zelf in 2021 met Magellan en de Subaru-telescoop in Hawaï had gemaakt. Sheppard gebruikte de Magellan Telescoop ook om de helderste van de twee nieuw ontdekte Neptununusmanen op te sporen. Het tweede, zwakkere maantje ontdekte hij met behulp van de Subaru-telescoop, in samenwerking met David Tholen van de Universiteit van Hawaï, Chad Trujillo van de Northern Arizona University en Patryk Sofia Lykawa van de Kindai-universiteit. Om het bestaan van dit uiterst zwakke object te kunnen bevestigen, moesten nog vervolgwaarnemingen worden gedaan met de Europese Very Large Telescope en de Gemini-telescoop in Chili. De helderste van de nieuwe Neptunusmanen, met de voorlopige aanduiding S/2002 N5, is circa 23 kilometer groot en doet ongeveer negen jaar over één omloop om de planeet. De zwakkere maan – S/2021 N1 - is ongeveer veertien kilometer groot en heeft een omlooptijd van bijna 27 jaar. Beide zullen worden vernoemd naar een van de Nereïden uit de Griekse mythologie. Alledrie de nieuwe manen doorlopen wijde, excentrische en schuine banen, wat suggereert dat ze zijn ingevangen door de zwaartekracht van Uranus en Neptunus, kort na de vorming van deze planeten in de gordel van stof en puin rond de nog jonge zon. (EE)
Meer informatie:
New moons of Uranus and Neptune announced

   
22 februari 2024 • Astronomen vinden overtuigend bewijs voor neutronenster in restant van ontplofte ster
Astronomen die gebruik maken van de Webb-ruimtetelescoop hebben een sterke aanwijzing gevonden dat er in het restant van supernova 1987A – de enige supernova van de afgelopen vierhonderd jaar die met het blote oog waarneembaar was – een zogeheten neutronenster is achtergebleven (Science, 22 februari). Een supernova is niets anders dan een ster die op spectaculaire wijze ontploft. In het geval van supernova 1987A ging het daarbij om een ster die minstens acht keer zoveel massa had als de zon. Dergelijke explosies zijn de belangrijkste bronnen van chemische elementen zoals koolstof, zuurstof en ijzer die leven mogelijk maken. Na de explosie blijft een klein compact object achter in de vorm van een neutronenster of een zwart gat. Hoewel supernova 1987A al meer dan dertig jaar wordt waargenomen, hebben astronomen het object dat na deze sterexplosie achterbleef niet rechtstreeks kunnen bekijken, omdat het (nog) verscholen zit een uitdijende wolk van gas en stof. Een internationaal onderzoeksteam geleid door de Zweedse astronoom Claes Fransson van de Universiteit van Stockholm en met inbreng van de Nederlandse astronoom Ewine van Dishoeck van de Sterrewacht Leiden, heeft het restant van supernova 1987A nu op infrarode golflengten waargenomen met de Webb-ruimtetelescoop, en daarbij de samenstelling van de puinwolk gemeten. Daarbij hebben de astronomen op de plaats van de explosie emissielijnen van sterk geïoniseerd argon- en zwavelgas kunnen aantonen. De aanwezigheid van deze sterk geïoniseerde gassen kan alleen worden verklaard als er een heldere bron van ultraviolette en röntgenstraling aanwezig is. Een zwart gat kan daar niet de oorzaak van zijn. De Webb-waarnemingen leveren daarmee het overtuigende bewijs dat na supernova 1987A een neutronenster is achtergebleven. Fransson en zijn team hebben twee verschillende scenario’s doorgerekend en daarbij vastgesteld dat argon- en zwavelatomen alleen kunnen zijn geïoniseerd door de ultraviolette en röntgenstraling van een neutronenster of eventueel door de ‘wind’ van energierijke deeltjes die door een snel rondtollende neutronenster wordt uitgestoten. In het het eerste geval zou het oppervlak van de ontstane neutronenster een temperatuur van ongeveer een miljoen graden moeten hebben, wat overigens al aanzienlijk minder heet is dan zijn ontstaanstemperatuur van 100 miljard graden, dertig jaar geleden. Om vast te stellen welk van beide scenario’s het juiste is, zullen vervolgwaarnemingen moeten worden gedaan met de ruimtetelescopen Webb en Hubble en telescopen op aarde. (EE)
Meer informatie:
Astronomers find first strong evidence of neutron star remnant of exploding star

   
22 februari 2024 • Kuipergordel is mogelijk omvangrijker dan gedacht
De Kuipergordel – het uitstrekte buitengebied van ons zonnestelsel – is wellicht aanzienlijk groter dan gedacht. Dat blijkt uit gegevens van een instrument van NASA-ruimtesonde New Horizons dat bijhoudt met hoeveel (microscopisch kleine) stofdeeltjes de ruimtesonde in botsing komt terwijl hij met een snelheid van 50.000 kilometer per uur door de ruimte raast. New Horizons werd in 2006 gelanceerd om de verre dwergplaneet Pluto en zo mogelijk nog enkele kleinere ijsachtige objecten te gaan bekijken. Inmiddels is de ruimtesonde al bijna 9 miljard kilometer van ons verwijderd, maar hij stuurt nog steeds gegevens naar de aarde. De verwachting was dat New Horizons, naarmate hij zich verder van de zon verwijdert, steeds minder stofdeeltjes tegen zou komen – de minuscule ijzige overblijfselen van botsingen tussen de grote objecten die de Kuipergordel bevolken. Maar dat lijkt dus niet het geval. Volgens planeetwetenschappers wijst dit erop dat de Kuipergordel miljarden kilometers breder is dan geschat. Buiten de Kuipergordel zou zich zelfs nog een tweede gordel van ijzig materiaal kunnen bevinden. De metingen komen op een moment dat wetenschappers van de New Horizons-missie, met behulp van telescopen zoals de Japanse Subaru-telescoop op Hawaï, een aantal Kuipergordelobjecten hebben ontdekt die zich ver voorbij de ‘traditionele’ buitenste rand van de Kuipergordel ophouden. Gedacht werd dat deze rand, waar de aantallen objecten beginnen af te nemen, zich op ongeveer 7,5 miljard kilometer van de zon bevindt, maar nieuw bewijs suggereert dat dit eerder 12 miljard kilometer of meer zal zijn. Wel is het denkbaar dat een deel van de geregistreerde deeltjes in het binnenste deel van de Kuipergordel zijn ontstaan, en door de stralingsdruk van de zon en andere factoren naar buiten zijn geduwd. Een andere mogelijkheid is dat New Horizons op een populatie van kortlevende ijsdeeltjes is gestuit, waarmee in de bestaande modellen van de Kuipergordel geen rekening is gehouden. Naar verwachting heeft New Horizons nog voldoende raketbrandstof en stroom om tot zeker 2040 te blijven functioneren. In dat geval zou de stofmeter t.z.t. zelfs de overgang kunnen registeren naar een gebied dat door interstellaire deeltjes – deeltjes van buiten ons zonnestelsel dus – wordt gedomineerd. (EE)
Meer informatie:
NASA’s New Horizons Detects Dusty Hints of Extended Kuiper Belt

   
20 februari 2024 • Verre ijswerelden zijn mogelijk geologisch actief
De verre dwergplaneten Eris en Makemake zijn mogelijk geologisch actief, net zoals Pluto. Dat wordt afgeleid uit recent onderzoek met de Webb-ruimtetelescoop (Icarus, april 2024). Voor geologische processen zijn aanzienlijke hoeveelheden warmte nodig. Omdat Pluto en andere objecten in de zogeheten Kuipergordel van ons zonnestelsel zijn ontstaan uit zeer koude materialen en nooit dicht genoeg in de buurt van de zon zijn gekomen om significant op te warmen, werd daarom lang aangenomen dat dergelijke ijswerelden vrijwel geen geologische activiteit zouden vertonen. Toch bleek uit opnamen van ruimtesonde New Horizons dat het oppervlak van Pluto in recente tijden is ‘ververst’. Voorlopig zijn er geen plannen om een ruimtesonde naar Eris en Makemake te sturen, maar dankzij de Webb-ruimtetelescoop kunnen planeetwetenschappers toch veel over hen te weten komen. Een team onder leiding van Christopher Glein (Southwest Research Institute, VS) heeft Webb gebruikt om het door de dwergplaneten weerkaatste zonlicht te analyseren. De daarbij vastgelegde infraroodspectra bevatten informatie over de chemische samenstelling van hun oppervlakken. Uit de spectra blijkt dat Eris en Makemake beide veel methaanijs op hun oppervlak hebben, maar anders dan bij Makemake zijn er bij Eris ook aanwijzingen voor stikstofijs. Opvallend is verder dat geen van beide koolstofmonoxide lijken te bevatten, hoewel dat een belangrijk bestanddeel is van het ijs op kometen, waarvan wordt aangenomen dat ze eveneens uit de Kuipergordel afkomstig zijn. Ook zijn er geen tekenen te zien van grotere organische moleculen, zoals die zich vormen wanneer methaan aan straling wordt blootgesteld. Het ontbreken van diverse soorten ijs en organische moleculen op het oppervlak van beide dwergplaneten is opmerkelijk. Volgens de onderzoekers kan dit een aanwijzing zijn dat er via cryovulkanisme nog ‘verse’ methaan vanuit hun inwendige aan de oppervlakte komt. En dat zou dan weer kunnen betekenen dat de kernen van Eris en Makemake nog genoeg warmte afgeven om een ondergrondse oceaan in stand te houden, zoals ook diverse manen van Jupiter en Saturnus die hebben. (EE)
Meer informatie:
SwRI Scientists Find Evidence of Geothermal Activity Within Icy Dwarf Planets

   
19 februari 2024 • Astronomen (her)ontdekken recordbrekende quasar
Astronomen hebben, met behulp van de Europese Very Large Telescope (VLT), een heldere quasar opgespoord – de allerhelderste die ooit is waargenomen. Quasars zijn de heldere kernen van verre sterrenstelsels en worden van energie voorzien door superzware zwarte gaten. Het zwarte gat in deze recordbrekende quasar wordt per dag een zonsmassa zwaarder en is daarmee, voor zover bekend, ook het snelst groeiende zwarte gat dat we kennen (Nature Astronomy, 19 februari). Zwarte gaten die quasars aandrijven, verzamelen materie uit hun omgeving – een proces waarbij zoveel energie wordt opgewekt dat er enorme hoeveelheden licht vrijkomen. Zo veel zelfs dat quasars tot de helderste hemelobjecten behoren, en ook verre exemplaren zichtbaar zijn vanaf de aarde. In het algemeen geldt dat de helderste quasars worden aangedreven door de snelst groeiende superzware zwarte gaten. De nu ontdekte quasar, J0529-4351 genaamd, is zo ver van de aarde verwijderd dat zijn licht er meer dan 12 miljard jaar over heeft gedaan om ons te bereiken. Rond het zwarte gat dat hem van energie voorziet heeft zich een schijf van materie opgehoopt die 500 biljoen keer zo fel straalt als onze zon. Met een middellijn van zeven lichtjaar is deze schijf misschien wel de grootste accretieschijf in het heelal. Dat de heldere quasar pas nu is ontdekt, is opmerkelijk, maar niet onverklaarbaar. Voor het opsporen van quasars moeten grote stukken hemel worden afgespeurd. De resulterende databestanden zijn dermate groot dat onderzoekers vaak gebruik maken van machine-learning-modellen om quasars van andere hemelobjecten te onderscheiden. Maar deze modellen worden ‘getraind’ met bestaande gegevens, waardoor ze kandidaten afleveren die op al bekende objecten lijken. Als een nieuwe quasar helderder is dan alle andere quasars die zijn waargenomen, kan het computerprogramma deze simpelweg als een relatief nabije ster beschouwen. En dat is precies wat nu is gebeurd. In feite was J0529-4351 al op foto’s uit 1980 te zien, maar bij een geautomatiseerde analyse van gegevens werd hij ‘afgewezen’, omdat hij te helder zou zijn voor een quasar. Recente waarnemingen met de VLT hebben echter duidelijk gemaakt dat het wel degelijk een quasar is. (EE)
Meer informatie:
Helderste en snelstgroeiende: astronomen ontdekken recordbrekende quasar

   
16 februari 2024 • Webb-ruimtetelescoop fotografeert mogelijke planeten rond witte dwergsterren
Over enkele miljarden jaren zal onze zon opzwellen tot een rode reus en haar buitenste gaslagen de ruimte in blazen. Wat overblijft is een witte dwerg: een object ter grootte van de aarde, maar met net zoveel massa als de zon. De planeten Mercurius, Venus en wellicht ook de aarde zullen door de opzwellende zon worden opgeslokt. Maar de overige planeten van ons zonnestelsel bevinden zich op veilige afstand en ontspringen de dans. Een onderzoeksteam onder leiding van Susan Mullally van het Space Telescope Science Institute in Baltimore (VS) heeft nu het vermoedelijke eindresultaat van dit proces vastgelegd met de Webb-ruimtetelescoop. Met dit instrument hebben de astronomen vier witte dwergen onder de loep genomen. Door heel zorgvuldig het licht van de witte dwergen zelf uit de opnamen weg te ‘poetsen’ ontdekten ze bij twee van de vier het zwakke schijnsel van een mogelijke reuzenplaneet. Op de opgeschoonde foto’s van de twee witte dwergen is een roodachtig getint object te zien. Als dit inderdaad planeten zijn, dan hebben ze minstens net zoveel massa als de planeet Jupiter. En waarschijnlijk bevonden ze zich oorspronkelijk net zo ver van hun moedersterren als Jupiter en Saturnus van de zon. Helemaal zeker is de ontdekking van de planeten echter niet. Het is niet onmogelijk dat de rode vlekjes op de Webb-opnamen in werkelijkheid kleine objecten binnen ons eigen zonnestelsel zijn die tijdens de opnamen toevallig het beeldveld van de ruimtetelescoop doorkruisten. Ook zouden het roodachtige sterrenstelsels kunnen zijn die ver achter de witte dwergen staan. Maar de onderzoekers schatten dat de kans op deze toevalligheden klein is: 1 op 3000. (EE) 
Meer informatie:
JWST Photographs Possible Giant Planets Around White Dwarfs

   
15 februari 2024 • Nieuwe waarnemingen leggen onverklaarbaar verre, oude sterrenstelsels bloot
Ons begrip van het ontstaan van sterrenstelsels en de aard van de donkere materie zou wel eens volledig op zijn kop kunnen komen te staan na nieuwe waarnemingen van een populatie van sterren, van meer dan 11 miljard jaar geleden, die omvangrijker is dan ons Melkwegstelsel en eigenlijk niet zou mogen bestaan. Tot die conclusie komt een internationaal onderzoeksteam onder leiding van Karl Glazebrook van Swinburne University of Technology in Australië (Nature, 14 februari). De bevindingen van de astronomen zijn gebaseerd op nieuwe spectroscopische gegevens van de Webb-ruimtetelescoop. Deze laten zien dat een groot sterrenstelsel in het vroege heelal, dat we waarnemen zoals het er 11,5 miljard jaar geleden uitzag, een extreem oude populatie van sterren heeft die nog eens 1,5 miljard eerder is gevormd. Dat lijkt onmogelijk, omdat er op dat moment nog niet genoeg donkere materie was samengeklonterd om de vorming van deze sterren mogelijk te maken. Het team van Glazebrook was al zeven jaar op ‘jacht’ naar dit specifieke sterrenstelsel, en heeft het urenlang bekeken met de twee grootste telescopen op aarde (de Keck-telescoop op Hawaï en de Europese Very Large Telescope in Chili) om erachter te komen hoe oud het was. Maar het was te zwak om zinnige metingen te kunnen doen. Webb is de eerste telescoop die de aard van het stelsel heeft kunnen bevestigen. De bestaande theorieën over de vorming van sterrenstelsels voorspellen dat het aantal zware sterrenstelsels sterk afneemt naarmate je dieper het heelal in kijkt. Maar inmiddels zijn al extreem zware, rustige sterrenstelsels waargenomen op één tot twee miljard jaar na de oerknal. En dat zet de huidige theoretische modellen op losse schroeven. De hamvraag is nu hoe zich zo vroeg in de geschiedenis van het heelal sterrenstelsels hebben kunnen vormen, en welke raadselachtige mechanismen ervoor hebben gezorgd dat het stervormingsproces stopte, terwijl het elders in het heelal gewoon doorging. Ook is nog onduidelijk hoe talrijk deze vroege sterrenstelsels zijn. Verdere waarnemingen zullen dit moeten uitwijzen.
Meer informatie:
‘Beyond what’s possible’: new JWST observations unearth mysterious ancient galaxies

   
14 februari 2024 • Verklaring voor korte kosmische radioflitsen lijkt een stapje dichterbij
Wat is de oorzaak van de snelle radioflitsen – korte, maar intense uitbarstingen van radiostraling die de afgelopen jaren zijn waargenomen? Astronomen zijn mogelijk een stap dichter bij het antwoord op deze vraag gekomen. Met behulp van twee röntgentelescopen in de ruimte hebben ze ingezoomd op het grillige gedrag van een magnetar – het snel rondtollende, compacte restant van een uitgedoofde ster – kort vóór en ná dat deze zo’n radioflits produceerde (Nature, 14 februari). Hoewel ze slechts een fractie van een seconde duren, komt bij snelle radioflitsen ongeveer net zoveel energie vrij als onze zon in een jaar produceert. Maar omdat ze zo kort duren, laat zich doorgaans maar moeilijk vaststellen waar de radioflitsen precies vandaan komen. Tot 2020 bevonden de enige radioflitsen waarvan de bron kon worden herleid zich buiten ons Melkwegstelsel – te ver weg om te kunnen vaststellen door welk soort object ze waren uitgestoten. Maar toen er uiteindelijk dan toch eentje binnen het Melkwegstelsel werd waargenomen, bleek die afkomstig van een magnetar. In oktober 2021 produceerde dezelfde magnetar, met de aanduiding SGR 1935+2154, opnieuw een snelle radioflits. En deze werd gedetailleerd bekeken door NASA-satelliet NuSTAR en het NICER-instrument aan boord van het internationale ruimtestation ISS. De beide röntgentelescopen namen de magnetar uren achtereen waar, en vingen zo een glimp op van wat zich op het oppervlak van dit object afspeelde. De waarnemingen laten zien dat de radioflits plaatsvond tussen twee ‘schokken’ waarbij de magnetar plotseling sneller begon te draaien. SGR 1935+2154 is naar schatting ongeveer achttien kilometer groot en tolt ongeveer 3,2 keer per seconde om zijn as. Het versnellen of afremmen van deze draaiing kost enorm veel energie. De onderzoekers waren dan ook verrast om te zien dat de magnetar tussen beide schokken binnen enkele uren afremde tot minder dan zijn oorspronkelijke draaisnelheid. Normaal gesproken duurt dit proces weken tot maanden. Er gebeuren dus duidelijk dingen met deze objecten op veel kortere tijdschalen dan tot nu toe werd aangenomen. En het vermoeden bestaat dat er een verband is met de manier waarop snelle radioflitsen worden opgewekt. Op basis van deze ene waarneming kan echter nog niet precies worden vastgesteld welke factoren daarbij een rol spelen. Een van de mogelijkheden is dat bij de eerste schok een barst in het oppervlak van de magnetar is ontstaan, waardoor materiaal uit het inwendige van het object kon ontsnappen. Door massaverlies gaan rondtollende objecten langzamer draaien, en dat zou de sterke afremming van SGR 1935+2154 kunnen verklaren. Maar het laatste woord is hier nog niet over gezegd. (EE)
Meer informatie:
NASA Telescopes Find New Clues About Mysterious Deep Space Signals

   
13 februari 2024 • Astronomen ontdekken vrij rondzwervende ‘dubbele Jupiter’
Een onderzoeksteam onder leiding van Luis F. Rodríguez van de Universiteit van Mexico heeft een bijzondere ontdekking gedaan: twee om elkaar wentelende objecten die ongeveer net zoveel massa hebben als de planeet Jupiter, maar niet gebonden zijn aan een ster. Het bestaan ervan kwam aan het licht bij waarnemingen van de Orionnevel – een bekend stervormingsgebied – met twee radiotelescopen in de VS en de Webb-ruimtetelescoop. Met behulp van de VLA onderzochten de astronomen een klasse van objecten die bekendstaan als Jupiter-mass binary objects of kortweg JuMBO’s. In 2023 werd een groep van veertig van deze objecten opgespoord, en de verwachting was dat ze ook op radiogolflengten waarneembaar zouden zijn. Verrassend genoeg is dat maar bij één – JuMBO 24 – ook echt het geval. De twee planeten in dit dubbelsysteem blijken beide aanzienlijk meer radiostraling uit te zenden dan bruine dwergen – ‘mislukte’ sterren die veel met JuMBO’s gemeen hebben, en doorgaans op infrarode golflengten worden waargenomen. Onduidelijk is nog hoe objecten als deze in het bestaande plaatje van de vorming van sterren en planeten passen. Maar theoretisch zouden de beide componenten van JuMBO 24 manen kunnen hebben die vergelijkbaar zijn met Europa (Jupiter) en Enceladus (Saturnus) – manen met een oceaan onder hun ijskorst. (EE)
Meer informatie:
Astronomers Discover Jupiter-sized Objects Drawn into Each Other’s Orbit

   
13 februari 2024 • Watermoleculen gedetecteerd op het oppervlak van droge planetoïden
Met behulp van gegevens van de (inmiddels uit de vlucht genomen) ‘vliegende sterrenwacht’ SOFIA hebben wetenschappers van het Southwest Research Institute (VS) voor het eerst watermoleculen ontdekt op het oppervlak van twee silicaatrijke planetoïden. De detectie komt als een verrassing, omdat werd aangenomen dat planetoïden van dit type zeer droog zijn (Planetary Science Journal, 12 februari). Planetoïden zijn overblijfselen van het planeetvormingsproces, en hun samenstellingen hangen sterk af van de plek binnen de zonnenevel waar ze zijn gevormd. Silicaatrijke, c.q. droge planetoïden ontstonden dicht bij de zon, terwijl ijsachtig materiaal verder daarvandaan is samengeklonterd. Door de locaties en samenstellingen van planetoïden te onderzoeken, kunnen planeetwetenschappers te weten komen hoe de verschillende materialen in de zonnenevel waren verdeeld en hoe ze sinds hun vorming zijn geëvolueerd. Bij eerdere waarnemingen met de infraroodtelescoop van SOFIA had het onderzoeksteam, onder leiding van Anicia Arredondo, al watermoleculen in een van de grootste kraters op het zuidelijk halfrond van de maan gedetecteerd. Dat bracht de onderzoekers op het idee om het instrument ook op een aantal van droge planetoïden te richten. Bij de planetoïden Iris en Massalia resulteerde dit in een eenduidige detectie van moleculair water. De spectrale gegevens van twee kleinere planetoïden, Parthenope en Melpomene, bevatten te veel ruis om de aanwezigheid van water met zekerheid te kunnen vaststellen. Het team wil daarom een stuk of dertig planetoïden ook gaan bekijken met de Webb-ruimtetelescoop. (EE)
Meer informatie:
SwRI Scientists Identify Water Molecules on Asteroids for the First Time

   
9 februari 2024 • Ook supernova’s van type Ia kunnen belangrijke ‘stoffabrieken’ zijn
De ruimte tussen de sterren bevat grote hoeveelheden stof – moleculen die zijn samengeklonterd tot kleine vaste deeltjes. Maar waar dit stof precies vandaan komt, is niet altijd even duidelijk. Een internationaal team van astronomen uit onder meer China, de VS, en Chili heeft nu echter een belangrijke nieuwe bron van kosmisch stof opgespoord: de botsing van de schokgolf van een supernova van Type Ia met gas in zijn omgeving (Nature Astronomy, 9 februari). Dat supernova’s een rol spelen bij de productie van stof was al bekend, maar tot nu toe was dit alleen bij supernova’s van type II geconstateerd – supernova’s die ontstaan wanneer de kern van een zware ster ineenstort en vervolgens explodeert. Explosies van dit type treden echter niet op in zogeheten elliptische sterrenstelsels, terwijl deze wél kosmisch stof bevatten. Het nieuwe onderzoek laat zien dat het stof in deze sterrenstelsels voor een groot deel afkomstig kan zijn van supernova’s van Type Ia: de explosies van witte dwergsterren die materie van een begeleidende normale ster hebben afgesnoept. De astronomen leiden dit af uit waarnemingen van een supernova met de aanduiding SN 2018evt, die in de loop van drie jaar zijn gedaan met diverse telescopen in de ruimte en op aarde. Daarbij hebben ze ontdekt dat de schokgolf van de supernova op materiaal is gestuit dat eerder door een of beide sterren in het dubbelstersysteem werd afgestoten. Tijdens hun waarnemingen merkten de onderzoekers namelijk op dat de supernova op zichtbare golflengten aanzienlijk zwakker werd, terwijl hij in het infrarood juist helderder begon te gloeien. Dit was een duidelijk teken dat er stof vrijkwam bij de botsing tussen de schokgolf van de supernova en het circumstellaire gas. De waarnemingen wijzen erop dat bij deze ene supernova-explosie ongeveer een honderdste zonsmassa aan stof is geproduceerd. Dit lijkt niet zo veel, maar naarmate het restant van de supernova afkoelt kan de hoeveelheid stof nog met een factor tien toenemen. En daarmee zouden supernova’s van type Ia weleens de belangrijkste leveranciers van stof in elliptische sterrenstelsels kunnen zijn. (EE)
Meer informatie:
Researchers discover cosmic dust storms from Type Ia supernova

   
8 februari 2024 • Nieuwe waarnemingen laten zien dat het zwarte gat in het Melkwegstelsel klaar is voor actie
Het superzware zwarte gat in het centrum van ons Melkwegstelsel, Sagittarius A* of kortweg Sgr A*, draait zo snel dat het de ruimtetijd eromheen vervormt tot iets dat op een rugbybal lijkt. Dat blijkt uit nieuw onderzoek, gebaseerd op gegevens van NASA’s röntgen-ruimtetelescoop Chandra en de Very Large Array (VLA)-radiotelescoop in de VS. Zwarte gaten hebben twee fundamentele eigenschappen: hun massa (hoeveel ze wegen) en hun ‘spin’ (hoe snel ze draaien). De bepaling van een van deze twee waarden vertelt wetenschappers veel over een zwart gat en hoe het zich gedraagt. Een team onderzoekers heeft nu een nieuwe methode toegepast die gebruik maakt van röntgen- en radiogegevens om te bepalen hoe snel Sgr A* ronddraait op basis van de wijze waarop materiaal naar het zwarte gat toe en daarvandaan stroomt. Ze ontdekten dat Sgr A* ronddraait met een hoeksnelheid – het aantal omwentelingen per seconde – die oploopt tot ongeveer zestig procent van de maximaal mogelijke waarde. Deze limiet wordt bepaald door het gegeven dat materie niet sneller kan reizen dan licht. Eerdere schattingen van de spin van Sgr A* varieerden van helemaal niet draaiend tot bijna maximaal draaiend. Een draaiend zwart gat sleept de ‘ruimtetijd’ (de combinatie van tijd en de drie dimensies van ruimte) en nabije materie met zich mee terwijl het ronddraait. Daarbij wordt de ruimtetijd rond het zwarte gat ook platgedrukt. Als je van bovenaf op het draaiende zwarte gat kijkt, langs de loop van de jet die deze produceert, dan is de ruimtetijd cirkelvormig. Maar als je van opzij naar het zwarte gat kijkt, heeft de ruimtetijd de vorm van een rugbybal. En hoe sneller de spin, des te platter is de bal. Wanneer ze omgeven zijn door materie kunnen draaiende zwarte gaten jets van snelle deeltjes uitzenden, wat ten koste gaat van hun spin-energie. Vanwege de beperkte hoeveelheid materie rondom Sgr A* is dit zwarte gat de afgelopen duizenden jaren echter relatief rustig geweest, met relatief zwakke jets. Het nieuwe onderzoek laat zien dat hierin weleens verandering zou kunnen komen als de hoeveelheid materie rond Sgr A* toeneemt. Dit betekent dat in de toekomst, als de eigenschappen van de materie en de magnetische veldsterkte nabij het zwarte gat veranderen, een deel van de enorme spin-energie wordt aangesproken om veel krachtigere jets aan te drijven. De benodigde materie kan afkomstig zijn van gas of van de restanten van een ster die door de zwaartekracht van het zwarte gat aan flarden wordt getrokken wanneer deze te dicht in de buurt komt van Sgr A*. (EE)
Meer informatie:
Telescopes Show the Milky Way's Black Hole Is Ready for a Kick

   
8 februari 2024 • Kleine Saturnusmaan Mimas heeft een ondergrondse oceaan
Onder het kraterrijke oppervlak van Mimas, een van de kleinere manen van Saturnus, schuilt een oceaan van vloeibaar water. Dat is de verrassende conclusie van onderzoek onder leiding van Valéry Lainey van de sterrenwacht van Parijs. De oceaan zou pas vijf tot vijftien miljoen jaar geleden zijn ontstaan (Nature, 7 februari). Met een diameter van slechts ongeveer vierhonderd kilometer leek Mimas niet de meest voor de hand liggende plek om naar een oceaan te zoeken. Dat die er wel degelijk lijkt te zijn, volgt uit een gedetailleerde analyse van de getijdeninteracties tussen Mimas en haar moederplaneet Saturnus, gebaseerd op gegevens die de ruimtesonde Cassini in de loop van meer dan een decennium heeft verzameld. Daarbij zijn subtiele onregelmatigheden aan het licht gekomen in de omloopbaan van het maantje. Uit computersimulaties blijkt dat de vermoedelijke oceaan op een diepte van twintig tot dertig kilometer onder de ijskorst van Mimas ligt. Het bestaan ervan doet vermoeden dat er ook onder het oppervlak van andere kleine, ogenschijnlijk inactieve manen een oceaan kan schuilgaan. (EE)
Meer informatie:
Mimas' surprise: Tiny moon holds young ocean beneath icy shell

   
6 februari 2024 • Hevige uitbarsting van jonge zonachtige ster waargenomen
Onderzoekers van het Center for Astrophysics | Harvard & Smithsonian (CfA) hebben een ongewoon heldere uitbarsting waargenomen van een ster die op onze zon lijkt, maar veel jonger is. Gegevens van de Submillimeter Array, een opstelling van acht radioschotels op Mauna Kea (Hawaï), laten zien dat de betreffende ster – HD 283572 – in een paar uur tijd ruim een factor honderd helderder werd. HD 283572 heeft 40 procent meer massa dan onze zon en is ongeveer 400 lichtjaar van ons verwijderd. Met een leeftijd van minder dan drie miljoen jaar is hij meer dan duizend keer zo jong als de zon – de leeftijd waarop de vorming van aarde-achtige planeten rond sterren op gang komt. De hevige uitbarsting werd bij toeval geregistreerd tijdens waarnemingen van het stofrijke materiaal rond jonge sterren, dat een zwakke gloed afgeeft op radiogolflengten. Tijdens deze waarnemingen viel HD 283572 op door zijn grote helderheid. De ster had zich in de maanden vóór de uitbarsting rustig gehouden en was toen helemaal niet zichtbaar met de Submillimeter Array. De onderzoekers hebben de energie gemeten die bij de ‘opvlamming’ van HD 283572 is vrijgekomen en zijn daarbij tot conclusie gekomen dat in slechts negen uur tijd ongeveer een miljoen keer meer energie is vrijgekomen dan bij de uitbarstingen van andere zonachtige sterren in onze naaste omgeving. Maar op basis van deze ene waarneming laat zich niet precies vaststellen waardoor de uitbarsting is veroorzaakt. Duidelijk is wel dat eventuele planeten-in-wording rond HD 283572 de volle laag zullen hebben gekregen. En astronomen vermoeden dat krachtige uitbarstingen als deze een verwoestende uitwerking hebben op de atmosferen van planeten. (EE)
Meer informatie:
Extreme Eruption on Young Sun-like Star Signals Savage Environment for Developing Exoplanets

   
6 februari 2024 • De ringen rond Chariklo danken hun vorm mogelijk aan een klein maantje
Het dubbele ringenstelsel van de Centaur Chariklo dankt zijn bestaan mogelijk aan een klein maantje. Dat is de conclusie die onderzoekers van het Planetary Science Institute (VS) trekken uit computersimulaties van dit intrigerende object (The Planetary Science Journal, 6 februari). Centaurs zijn kleine objecten die qua afmetingen op planetoïden lijken, maar qua samenstelling meer weghebben van kometen. Ze cirkelen in wijde banen om de zon, veelal tussen de omloopbanen van de planeten Jupiter en Neptunus. Chariklo is ongeveer 250 kilometer groot en is de eerste Centaur waarbij ringen zijn ontdekt. De computersimulaties laten zien dat de huidige configuratie van dit ringenstelsel kan worden toegeschreven aan een maantje van ongeveer drie kilometer groot. Of dit maantje ook echt bestaat, zal nog moeten blijken: vanwege de grote afstand van Chariklo – ruwweg 2,4 miljard kilometer – valt een object van deze grootte buiten het bereik van de telescopen op aarde. Het hypothetische maantje is ook niet de enig mogelijke verklaring voor het bestaan van het huidige ringenstelsel van Chariklo. Het is ook denkbaar dat zich op het oppervlak van deze Centaur een zwaartekrachtsanomalie bevindt (bijvoorbeeld een gebergte), en dat de ringen in resonantie zijn met de rotatie van zijn kern. Chariklo vertoont twee ringen van een paar kilometer breed. Om de ringen zo dun te houden, moet er een mechanisme bestaan dat voorkomt dat het ringmateriaal zich verspreidt. In hun publicatie laten de wetenschappers zien dat een Chariklo-achtig ringenstelsel zónder maantje mettertijd steeds breder wordt. De onderzoekers vermoeden dat de ringen van Chariklo voornamelijk uit ijsdeeltjes bestaan, net als die van de grote planeten van ons zonnestelsel. Voor het overige is er nog bijzonder weinig over bekend. (EE)
Meer informatie:
Small Satellite May Shape Centaur Rings

   
2 februari 2024 • Astronomen ontdekken bij toeval een ‘onmogelijk’ sterrenstelsel
Een internationaal onderzoeksteam, onder leiding van Tim Carleton van Arizona State University (VS), heeft een ‘rustig’ dwergsterrenstelsel ontdekt dat opdook op beelden van de Webb-ruimtetelescoop die voor een ander doel waren gemaakt (The Astrophysical Journal Letters, 31 januari). Sterrenstelsels zijn grote verzamelingen van sterren, gaswolken en donkere materie die door de zwaartekracht bij elkaar worden gehouden. Dwergstelsels – de meest voorkomende sterrenstelsels in het heelal – zijn per definitie klein en niet erg helder. Ze bevatten minder dan 100 miljoen sterren, terwijl ons Melkwegstelsel bijvoorbeeld bijna 200 miljard sterren telt. Het nu door Carleton en collega’s opgespoorde dwergstelsel werd vastgelegd bij een verkenning van een cluster van sterrenstelsels, die het PEARLS-project heet. Om die reden heeft het dwergstelsel, dat zich net buiten het eigenlijke zoekgebied bevond, de ‘naam’ PEARLSDG gekregen.  PEARLSDG heeft niet de gebruikelijke kenmerken van een dwergsterrenstelsel. Het stelsel staat niet onder invloed van een naburig sterrenstelsel en vormt ook geen nieuwe sterren. Het behoort daarmee tot de ‘eenzame, rustige sterrenstelsels’ – een klasse van zeer zeldzame dwergstelsels. Tot nu toe dachten astronomen dat zo’n geïsoleerd sterrenstelsel ofwel sterren zou blijven vormen, ofwel interacties zou aangaan met een groter begeleidend sterrenstelsel. Maar deze theorie is niet van toepassing op PEARLSDG, die geen nieuwe sterren vormt én alleenstaand is. Ook verrassend is dat op de Webb-opnamen afzonderlijke sterren te zien zijn. Aan de hand van de helderheid van deze sterren hebben de astronomen kunnen vaststellen dat PEARLSDG ongeveer 98 miljoen lichtjaar van ons verwijderd is. Daarmee is het een van de verste sterrenstelsels waarin individuele sterren kunnen worden onderscheiden. De ontdekking verandert het beeld dat astronomen van het ontstaan en de evolutie van sterrenstelsels hebben. Zo lijkt het aannemelijk dat  ‘rustige dwergsterrenstelsels’ niet zo schaars zijn als verondersteld. (EE)
Meer informatie:
Team of astronomers led by ASU scientist discovers galaxy that shouldn’t exist

   
1 februari 2024 • ALMA-radiotelescoop registreert gasuitstroom van verre quasar
Een team van onderzoekers van verschillende Japanse universiteiten heeft ontdekt dat quasars inderdaad een sterke uitstroom van gas kunnen produceren die de stervorming in het sterrenstelsel waar zij deel van uitmaken afremt. De ontdekking is gebaseerd op waarnemingen met de Atacama Large Millimeter/submillimeter Array (ALMA) in Chili (The Astrophysical Journal, 1 februari). Een quasar is een compact object dat zijn energie ontleent aan een superzwaar zwart gat in het centrum van een groot sterrenstelsel. Quasars zijn uitermate helder en staan extreem ver weg. Door hun afstand en helderheid bieden ze een kijkje in de omstandigheden van het vroege heelal, toen dit nog geen miljard jaar oud was. Theoretisch onderzoek suggereert dat uitstromen van moleculair gas een belangrijke rol spelen bij de vorming en evolutie van sterrenstelsels, omdat ze het stervormingsproces kunnen beïnvloeden. En dat de zeer energierijke quasars weleens heel krachtige uitstromen zouden kunnen produceren, werd al verwacht. Moleculair gas is van vitaal belang voor de vorming van sterren. Een hoge concentratie van moleculair gas in een sterrenstelsel kan dus leiden tot de vorming van grote aantallen sterren. Maar door gas sneller de intergalactische ruimte in te blazen dan dat het voor stervorming kan worden gebruikt, weten moleculaire uitstromen de vorming van sterren in sterrenstelsels waarin quasars schuilgaan sterk af te remmen. De quasar die de onderzoekers hebben waargenomen, J2054-0005, is een van de helderste in het verre heelal. Om te zien of hij inderdaad een krachtige uitstroom van moleculair gas produceert, heeft het team hem bekeken met ALMA. Met dit instrument kon het uitstromende gas niet rechtstreeks worden gedetecteerd, maar de astronomen constateerden wel dat de intense straling van de heldere quasar door uitstromend gas wordt geabsorbeerd. (EE)
Meer informatie:
Gas on the run – ALMA spots the shadow of a molecular outflow from a quasar when the Universe was less than one billion years old

   
30 januari 2024 • Astronomen sporen achttien zwarte gaten op die nabije sterren opslokken
Overal aan de hemel zijn zwarte gaten te vinden die sterren verscheuren – als je maar weet hoe je ze moet opsporen. Dat is de conclusie van nieuw onderzoek door wetenschappers van het MIT, die achttien nieuwe tidal disruption events of TDE’s hebben ontdekt – kosmische gebeurtenissen waarbij een ster onder invloed van de getijdenkracht van een nabij zwart aan flarden wordt getrokken (The Astrophysical Journal, 29 januari). De onderzoekers ontdekten deze tot nu toe ‘verborgen’ gebeurtenissen door op een ongebruikelijke golflengte te kijken: het infrarood. Naast uitbarstingen van zichtbaar licht en röntgenstraling kunnen TDE's ook infraroodstraling produceren, met name in stofrijke sterrenstelsels, waarin een centraal zwart gat omgeven is door galactisch puin. Het vele stof in deze sterrenstelsels absorbeert zichtbaar licht en röntgenstraling normaal gesproken, maar tijdens een TDE wordt het stof ook opgewarmd, waardoor het waarneembaar wordt in het infrarood. Ook infraroodstraling kan dus een aanwijzing zijn voor een TDE. Door in het infrarood te kijken, is het MIT-team er nu in geslaagd om TDE’s op te sporen in sterrenstelsels waarin zulke gebeurtenissen tot nu toe verborgen bleven. Bij hun onderzoek hebben de wetenschappers gebruik gemaakt van archiefwaarnemingen van NASA-satelliet NEOWISE, die de hemel afspeurt op korte uitbarstingen van infraroodstraling. Nadat ze andere mogelijke oorzaken van zulke uitbarstingen hadden uitgesloten, zoals actieve galactische kernen en supernova-explosies, hielden ze achttien echte TDE-signalen over – een scherpe infraroodpiek, gevolgd door een geleidelijke dip, die een afspiegeling is van het proces waarbij een zwart gat dat een ster verscheurt het stof in de omgeving plotseling verhit tot ongeveer duizend graden, waarna het geleidelijk afkoelt. De onderzoekers onderzochten vervolgens de sterrenstelsels waarin de verschillende TDE’s optraden. Daarbij stelden ze vast dat ze in stelsels van uiteenlopende aard hadden plaatsgevonden. Vóór dit onderzoek hadden astronomen TDE’s voornamelijk waargenomen in sterrenstelsels waarin eerder een ‘starburst’ – een grote geboortegolf had plaatsgevonden, maar die sindsdien tot rust zijn gekomen. Het toeval wil dat deze stelsels ook relatief stofarm zijn, waardoor een TDE gemakkelijker te detecteren is. De nieuwe resultaten laten nu zien dat TDE’s in allerlei soorten sterrenstelsels optreden, niet alleen in voormalige starburst-stelsels. De achttien nieuwe ontdekkingen maken het ook mogelijk om een schatting te maken van hoe vaak er in een bepaald sterrenstelsel TDE’s optreden. Volgens de astronomen gebeurt dat ongeveer eens in de vijftigduizend jaar. (EE)
Meer informatie:
Astronomers spot 18 black holes gobbling up nearby stars

   
29 januari 2024 • Astronomen meten voor het eerst de massa van een zwart gat op 11 miljard lichtjaar afstand
Astronomen hebben voor het eerst een directe meting gedaan van de massa van een zwart gat dat zo ver weg staat, dat het licht uit zijn omgeving er 11 miljard jaar over heeft gedaan om ons te bereiken. Het onderzoeksteam, onder leiding van Taro Shimizu van het Max-Planck-Institut für extraterrestrische Physik in Duitsland, heeft vastgesteld dat het zwarte gat, met de aanduiding J0920, ongeveer 320 miljoen keer zoveel massa heeft als onze zon (Nature, 29 januari). Om directe metingen te doen van de massa van een zwart gat, gebruiken astronomen telescopen waarmee de bewegingen van het gas en de sterren die daaromheen draaien kunnen worden gevolgd. Hoe sneller ze bewegen, des te meer materie bevindt zich binnen hun omloopbaan. Deze techniek is al gebruikt om de massa’s van nabije zwarte gaten te meten, waaronder dat in het centrum van ons Melkwegstelsel. Maar op zeer grote afstanden is deze beweging heel moeilijk waarneembaar. Hierdoor waren vergelijkbare directe metingen van de massa’s van verre zwarte gaten tot nu toe niet mogelijk. De directe meting van de massa van J0920 is te danken aan ‘GRAVITY+’– een reeks upgrades van ESO’s Very Large Telescope Interferometer (VLTI) en diens GRAVITY-instrument die nog gaande is. De verbeteringen hebben astronomen in staat gesteld om het zwakke, verre gas rond het zwarte gat nauwkeuriger dan ooit te waar te nemen. De nauwkeurige meting van de massa van J0920 is een eerste stap op weg naar een beter begrip van de manier waarop zwarte gaten en sterrenstelsels zijn gegroeid toen het heelal nog maar een paar miljard jaar oud was. De massabepaling wijst erop dat het zwarte gat in dit sterrenstelsel ongeveer vier keer zo licht is als op grond van de massa van het omringende sterrenstelsel verwacht zou mogen worden. Dit doet vermoeden dat het zwarte gat minder snel is gegroeid dan het sterrenstelsel waar het deel van uitmaakt. (EE)
Meer informatie:
Massabepaling van ver zwart gat bevestigt het potentieel van GRAVITY+

   
26 januari 2024 • De maan krimpt en daardoor ontstaan aardverschuivingen rond zijn zuidpool
In een nieuw onderzoeksartikel stellen Amerikaanse wetenschappers vast dat een aantal van de mogelijke landingsplaatsen voor de toekomstige bemande NASA-missie Artemis III bijzonder kwetsbaar zijn voor aardbevingen en -verschuivingen. Dat komt doordat de maan krimpt en het maanoppervlak een nogal losse structuur heeft (Planetary Science Journal, 25 januari). Door geleidelijke afkoeling is de maan de afgelopen paar honderd miljoen jaar in omtrek meer dan 45 meter gekrompen. En net zoals een druif rimpels krijgt als hij tot een rozijn krimpt, ontstaan er ook op de maan rimpels. Maar anders dan de soepele schil van een druif is het maanoppervlak broos, waardoor zich op plekken waar stukken maankorst tegen elkaar aan duwen breuken vormen. De wetenschappers hebben nu bewijs gevonden dat de krimp van de maan rond diens zuidpool heeft geleid tot opvallende vervormingen van het oppervlak. Omdat de vorming van breuken door het krimpen van de maan vaak gepaard gaat met seismische activiteit, zoals maanbevingen, kunnen locaties in de buurt van dergelijke breukzones gevaren opleveren voor toekomstige onderzoeksmissies. In hun artikel leggen de wetenschappers een verband tussen een verzameling breuken in het zuidpoolgebied van de maan en een van de krachtigste maanbevingen die meer dan vijftig jaar geleden door Apollo-seismometers is geregistreerd. Met behulp van modellen om de stabiliteit van hellingen in het gebied te simuleren, ontdekten ze dat sommige gebieden bijzonder kwetsbaar zijn voor aardverschuivingen als gevolg van seismische schokken. Op de maan ontstaan geregeld bevingen op diepten van slechts een honderdtal kilometers. Net als aardbevingen worden deze ondiepe maanbevingen veroorzaakt door breuken in het inwendige van de maan en kunnen ze sterk genoeg zijn om gebouwen, apparatuur en andere door mensen gemaakte structuren te beschadigen. Maar anders dan aardbevingen, die doorgaans in een paar seconden of minuten voorbij zijn, kunnen ondiepe maanbevingen uren of zelfs een hele middag duren. Volgens de onderzoekers betekent dit dat ondiepe maanbevingen een verwoestende uitwerking kunnen hebben op eventuele toekomstige bemande bases op de maan. ‘Je kunt het oppervlak van de maan beschouwen als een laag van droog, aangestampt grind en stof,’ aldus co-auteur Nicholas Schmerr van de Universiteit van Maryland (VS). ‘In de loop van de miljarden jaren is dit oppervlak getroffen door talrijke planetoïden en kometen, waarbij voortdurend scherpe brokken gesteente werden opgeworpen. Als gevolg daarvan bestaat het oppervlak uit los sediment dat gevoelig is voor trillingen en aardverschuivingen.’ (EE)
Meer informatie:
The Moon is Shrinking, Causing Landslides and Instability in Lunar South Pole

   
26 januari 2024 • Europees groen licht voor onderzoek zwaartekrachtgolven vanuit de ruimte en nieuwe Venus-missie
Het Europese ruimteagentschap ESA heeft groen licht gegeven aan twee missies, één om rimpelingen in de ruimtetijd, zogeheten zwaartekrachtgolven, te detecteren en een andere om de geheimen van Venus, de dichtstbijzijnde buurplaneet van de aarde, te onderzoeken. De Laser Interferometer Space Antenna (LISA) zal de eerste missie worden om zwaartekrachtgolven vanuit de ruimte te onderzoeken. De missie bestaat uit drie ruimtesondes die de aarde in haar baan om de zon volgen en daarbij een gelijkzijdige driehoek in de ruimte vormen, met zijden van 2,5 miljoen kilometer lang. Door met behulp van laserbundels heel nauwkeurig de afstanden tussen de ruimtesondes te meten, is het mogelijk om passerende zwaartekrachtgolven te detecteren. Zwaartekrachtgolven ontstaan door catastrofale gebeurtenissen in de ruimte, zoals botsingen tussen zwarte gaten, en gaan vrijwel ongehinderd met de lichtsnelheid door alles en iedereen heen. Als alles volgens plan verloopt, zal de LISA-missie in 2035 worden gelanceerd. De ruimtemissie naar Venus, EnVision geheten, zal al vier jaar eerder vertrekken. EnVision moet meer inzicht geven in de geschiedenis, de geologische activiteit en het klimaat van deze helse planeet. Het wordt de eerste ruimtemissie die met behulp van radartechnologie direct onder het oppervlak Venus gaat kijken. Het lot van beide ruimtemissies is verbonden met dat van de nieuwe Europese draagraket Ariane 6 die, na jarenlang uitstel, pas komende zomer haar eerste vlucht zal maken. (EE)
Meer informatie:
Gravitational wave, Venus missions get European green light

   
25 januari 2024 • ‘Microquasar’ SS 433 bevat doeltreffende deeltjesversneller
De H.E.S.S-sterrenwacht in Namibië is erin geslaagd zeer energierijke gammastraling te detecteren van de ‘jets’ van het intrigerende object SS 433. Op die manier hebben astronomen de exacte locatie binnen de jets van een van de meest efficiënte deeltjesversnellers in onze Melkweg weten op te sporen (Science, 25 januari). SS 433 bestaat uit een zwart gat dat materiaal aantrekt van een ster die dicht om hem heen draait. Zowel het zwarte gat als de ster heeft ongeveer tien keer zoveel massa als onze zon, en ze wentelen met een periode van dertien dagen om elkaar. Met zijn sterke zwaartekrachtveld onttrekt het zwarte gat materiaal van het oppervlak van de ster, dat zich rond het zwarte gat ophoopt als een schijf van gas. Wanneer materie vanuit de schijf naar het zwarte gat toe valt, worden twee bundels van geladen deeltjes gelanceerd. Deze jets staan haaks op het vlak van de schijf, en de daarin aanwezige deeltjes bereiken snelheden van een kwart van de lichtsnelheid. Vanwege deze eigenschappen wordt SS 433 ook wel een microquasar genoemd – een miniatuurversie van de quasars in de kernen van actieve sterrenstelsels. Tot voor kort was er nog nooit gammastraling gedetecteerd van een microquasar. Daar kwam in 2018 verandering in, toen het High Altitude Water Cherenkov Gamma-ray Observatory (HAWC) er voor het eerst in slaagde om zeer energierijke gammastraling uit de jets van SS 433 te detecteren. Dit betekent dat ergens in de jets deeltjes tot extreme energieën worden versneld. Naar aanleiding van de HAWC-detectie is de H.E.S.S.-sterrenwacht een waarnemingscampagne van het SS 433-systeem gestart. Dit heeft geresulteerd in ongeveer tweehonderd uur aan gegevens, en een duidelijke detectie van gammastraling van de jets van SS 433. De jets zijn tot op een afstand van minder dan één lichtjaar aan weerszijden van de centrale dubbelster waarneembaar, om vervolgens zo zwak te worden dat ze niet meer te zien zijn. Maar op ongeveer 75 lichtjaar afstand van hun ‘lanceerbasis’ komen ze abrupt weer tevoorschijn als heldere röntgenbronnen – net als bij eerdere röntgenwaarnemingen. Wat de astronomen echter verraste, was een verschuiving in de positie van de gammastraling bij verschillende energieën. De meest energierijke gammastraling wordt alleen waargenomen op het punt waar de jets abrupt weer verschijnen. De gebieden die gammastraling met lagere energieën uitzenden, verschijnen juist verderop in elke jet. Op zoek naar een verklaring hebben de onderzoekers een computersimulatie gedaan, en zo voor het eerst een schatting kunnen maken van de snelheid aan het uiteinde van de jet. Het verschil tussen deze snelheid en de snelheid waarmee de jets worden gelanceerd, suggereert dat de deeltjes verder naar buiten worden versneld door een sterke schokgolf. Hoe deze ontstaat is echter nog onduidelijk. (EE) 
Meer informatie:
Astrophysical jet caught in a ‘speed trap’

   
25 januari 2024 • Waterdamp ontdekt in atmosfeer van kleine exoplaneet
Astronomen hebben de Hubble-ruimtetelescoop gebruikt om de exoplaneet GJ 9827d te onderzoeken. In de atmosfeer van deze planeet, die ongeveer tweemaal zo groot is als de aarde, blijkt waterdamp te zitten. Onduidelijk is nog om hoeveel waterdamp het gaat. Volgens de astronomen zijn er twee mogelijke scenario’s. Het ene is dat de planeet nog steeds een waterstofrijke atmosfeer vasthoudt die rijk is aan water. In dat geval zou GJ 9827d een zogeheten mini-Neptunus zijn. Een andere mogelijkheid is dat het een hetere versie is van de Jupitermaan Europa, die twee keer zoveel water als de aarde onder zijn korst heeft. De planeet zou dan rotsachtig kunnen zijn en gehuld in grote hoeveelheden waterdamp. Omdat de planeet zo heet is als Venus (ruim 400 graden Celsius), zou het in dat geval met zekerheid een onherbergzame, broeierige wereld zijn. Hoe dan ook: als de planeet inderdaad een waterrijke atmosfeer heeft, dan zal hij waarschijnlijk op grotere afstand van zijn moederster zijn ontstaan, waar de temperatuur laag genoeg was om bevroren water in te zamelen. Vervolgens zou de planeet dichter naar de ster toe zijn gemigreerd, en geleidelijk zijn opgewarmd, waardoor het meeste waterstofgas ontsnapte. Een alternatieve verklaring is dat de planeet dicht bij de ster is gevormd en maar kleine hoeveelheden water in zijn atmosfeer heeft. De Hubble-ruimtetelescoop heeft GJ 9827d waargenomen tijdens elf zogeheten planeetovergangen die verspreid over elf jaar hebben plaatsgebonden. Bij zo’n planeetovergang of transit schuift een planeet voor zijn ster langs en wordt het licht van laatstgenoemde als het ware gefilterd door de planeetatmosfeer. Op zo’n moment kan met behulp van spectroscopie de samenstelling van de atmosfeer worden gemeten. (EE)
Meer informatie:
NASA's Hubble Finds Water Vapor in Small Exoplanet's Atmosphere

   
19 januari 2024 • Europese ruimtesonde ontdekt grote ijsvoorraad onder evenaar Mars
Radarmetingen door ESA-ruimtesonde Mars Express hebben meer inzicht gegeven in de samenstelling van een bijzondere structuur bij de evenaar van de planeet Mars, die de Medusae Fossae Formation (MFF) wordt genoemd. De meetgegevens wijzen op het bestaan van lagen bevroren water die zich tot diepten van enkele kilometers uitstrekken (Geophysical Research Letters, 18 januari). De MFF bestaat uit verschillende door de wind gevormde structuren van honderden kilometers breed en enkele kilometers hoog. Mars Express heeft hem meer dan vijftien jaar geleden al eens met radar onderzocht, en ontdekte daarbij kolossale afzettingen tot diepten van tweeënhalve kilometer. Maar tot nu toe was onduidelijk waaruit deze afzettingen bestaan: het konden ook lagen stof, vulkanische as of sediment zijn. Wetenschappers hebben de MFF nu nog eens goed bekeken met het radarinstrument van Mars Express, en daarbij ontdekt dat de ondergrondse afzettingen nog dikker zijn dan gedacht: tot wel 3,7 kilometer. Opvallend genoeg komen de weerkaatste radarsignalen overeen met die van gelaagd ijs: ze lijken op de radarsignalen van de poolkappen van Mars, waarvan bekend is dat ze veel ijs bevatten. Als het vermeende ijs in de Medusae Fossae Formation zou smelten, zou de hele planeet anderhalf tot drie meter onder water komen te staan. Alles bij elkaar zit er genoeg water onder de bodem om de Rode Zee op aarde te vullen. ‘Gezien de diepte ervan zouden we verwachten dat het MFF, als het gewoon een dikke stoflaag was, onder zijn eigen gewicht zou worden samengeperst’, aldus Andrea Cicchetti van het Nationaal Instituut voor Astrofysica in Italië. ‘Hierdoor zou iets ontstaan dat veel compacter is dan wat we daadwerkelijk met de MARSIS-radar zien. En toen we modelleerden hoe verschillende ijsvrije materialen zich zouden gedragen, bleek niets de eigenschappen van de de Medusae Fossae Formation te kunnen evenaren: er is ijs voor nodig.’ De nieuwe resultaten doen vermoeden dat de formatie is opgebouwd uit lagen stof en ijs, met een beschermende honderden meters dikke laag van droog stof of as als ‘deksel’. Voor het grijpen ligt de verborgen watervoorraad op Mars dus bepaald niet. (EE)
Meer informatie:
Buried water ice at Mars's equator?